📦Free shipping over $10 in most countries and regions!



shiftOut()

[Advanced I/O]

Description

Shifts out a byte of data one bit at a time. Starts from either the most (i.e. the leftmost) or least (rightmost) significant bit. Each bit is written in turn to a data pin, after which a clock pin is pulsed (taken high, then low) to indicate that the bit is available.

Note- if you’re interfacing with a device that’s clocked by rising edges, you’ll need to make sure that the clock pin is low before the call to shiftOut(), e.g. with a call to digitalWrite(clockPin, LOW).

This is a software implementation; see also the SPI library, which provides a hardware implementation that is faster but works only on specific pins.

Syntax

shiftOut(dataPin, clockPin, bitOrder, value)

Parameters

dataPin: the pin on which to output each bit. Allowed data types: int.
clockPin: the pin to toggle once the dataPin has been set to the correct value. Allowed data types: int.
bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST. (Most Significant Bit First, or, Least Significant Bit First).
value: the data to shift out. Allowed data types: byte.

Returns

Nothing

Example Code

For accompanying circuit, see the tutorial on controlling a 74HC595 shift register.

//**************************************************************//
//  Name    : shiftOutCode, Hello World                         //
//  Author  : Carlyn Maw,Tom Igoe                               //
//  Date    : 25 Oct, 2006                                      //
//  Version : 1.0                                               //
//  Notes   : Code for using a 74HC595 Shift Register           //
//          : to count from 0 to 255                            //
//****************************************************************

//Pin connected to ST_CP of 74HC595
int latchPin = 8;
//Pin connected to SH_CP of 74HC595
int clockPin = 12;
////Pin connected to DS of 74HC595
int dataPin = 11;

void setup() {
  //set pins to output because they are addressed in the main loop
  pinMode(latchPin, OUTPUT);
  pinMode(clockPin, OUTPUT);
  pinMode(dataPin, OUTPUT);
}

void loop() {
  //count up routine
  for (int j = 0; j < 256; j++) {
    //ground latchPin and hold low for as long as you are transmitting
    digitalWrite(latchPin, LOW);
    shiftOut(dataPin, clockPin, LSBFIRST, j);
    //return the latch pin high to signal chip that it
    //no longer needs to listen for information
    digitalWrite(latchPin, HIGH);
    delay(1000);
  }
}

Notes and Warnings

The dataPin and clockPin must already be configured as outputs by a call to pinMode().

shiftOut is currently written to output 1 byte (8 bits) so it requires a two step operation to output values larger than 255.

// Do this for MSBFIRST serial
int data = 500;
// shift out highbyte
shiftOut(dataPin, clock, MSBFIRST, (data >> 8));
// shift out lowbyte
shiftOut(dataPin, clock, MSBFIRST, data);

// Or do this for LSBFIRST serial
data = 500;
// shift out lowbyte
shiftOut(dataPin, clock, LSBFIRST, data);
// shift out highbyte
shiftOut(dataPin, clock, LSBFIRST, (data >> 8));